Skip to content

Object Creation API🍋

create_drillholes(name, collar, assays, survey=None, method=DesurveyingMethod.TANGENTIAL, dip_convention=DipDownward.NEGATIVE, name_dictionary={}) 🍋

Create GeoLime drillholes from Collar, Survey and Assay files.

Parameters:

Name Type Description Default
name str

name of Drillholes object to create.

required
collar DataFrame

DataFrame of collar file.

required
assays Union[List[DataFrame], DataFrame]

DataFrame(s) of intervals file (assay, geology, lithology, etc...).

required
survey Optional[DataFrame]

DataFrame of survey file.

None
method DesurveyingMethod

Desurveying method.

TANGENTIAL
dip_convention DipDownward

Convention of dip downward angle sign.

NEGATIVE
name_dictionary Dict[str, str]

mapping between column names and attributes. See Project().attributes_mapping for default attributes mapping.

{}

Returns:

Type Description
Drillholes

GeoLime Drillholes.

Raises:

Type Description
NotImplementedError

Desurveying method not in the available methods.

drillholes_from_dataframe(name, df, name_dictionary={}) 🍋

Create Drillholes from a Pandas DataFrame.

Parameters:

Name Type Description Default
name str

Name of created Drillholes.

required
df DataFrame

Ready to conversion DataFrame.

required
name_dictionary Dict[str, str]

Correspondence table mapping names to attributes.

{}

Returns:

Type Description
Drillholes

Drillholes

point_cloud_from_file(name, file_path, required_columns=[Coord.X, Coord.Y, Coord.Z]) 🍋

Load data from a CSV file and create a PointCloud object.

Parameters:

Name Type Description Default
name str

Name of the PointCloud object.

required
file_path str

Path to the input CSV file.

required
required_columns List[Union[Coord, str]]

List of required column names being the X, Y, and Z coordinate columns.

[X, Y, Z]

Returns:

Type Description
PointCloud

A PointCloud object containing the input data and any additional properties.

Raises:

Type Description
ValueError
  • Input file format is not CSV.
  • Required columns are missing or contain invalid data.

Note

Non alpha-numeric characters found in property names will be replaced with "_" and a warning will be printed out.

solid_from_dxf(name, file_path, automatic_hole_fix=False) 🍋

Load data from a DXF file and create a Solid object.

Parameters:

Name Type Description Default
name str

Name of the Solid object.

required
file_path str

Path to the input CSV file.

required
automatic_hole_fix bool

boolean indicator to whether perform a fix if needed or raise an error.

False

Returns:

Type Description
Solid

A Solid object containing the input data mesh.

Tip

Installing PyOgrio may lead to faster loading time.

surface_from_dxf(name, file_path) 🍋

Load data from a DXF file and create a Surface object.

Parameters:

Name Type Description Default
name str

Name of the Surface object.

required
file_path str

Path to the input CSV file.

required

Returns:

Type Description
Surface

A Surface object containing the input data mesh.

Tip

Installing PyOgrio may lead to faster loading time.

gis_object_from_file(name, file_path) 🍋

Create GeoLime GIS object from a shp, geojson or gpkg file. The file loading is delegated to GeoPandas: see GeoPandas - Read for more information.

Parameters:

Name Type Description Default
name str

name of the GISObject to create.

required
file_path str

path to the shp, geojson or gpkg file.

required

Returns:

Type Description
GISObject

GeoLime GISObject.

Note

Non alpha-numeric characters found in property names will be replaced with "_" and a warning will be printed out.

block_model_from_file(name, file_path, required_columns=[Coord.X, Coord.Y, Coord.Z], cell_size=None) 🍋

Load data from a CSV file and create a BlockModel object.

Parameters:

Name Type Description Default
name str

Name of the BlockModel object.

required
file_path str

Path to the input CSV file.

required
required_columns List[Union[Coord, str]]

List of required column names being the X, Y, and Z coordinate columns.

[X, Y, Z]
cell_size Optional[Vector]

bypass automatic cell size inference and enforce cell size. Note that the shape and origin of the Block Model is directly computed from the cell size: providing an erroneous cell size may have undesirable side effects.

None

Returns:

Type Description
BlockModel

A BlockModel object containing the input data and any additional properties.

Raises:

Type Description
ValueError
  • Input file format is not CSV.
  • Required columns are missing or contain invalid data.

Note

Non alpha-numeric characters found in property names will be replaced with "_" and a warning will be printed out.