Visualize Data¶
In [1]:
Copied!
import geolime as geo
from pyproj import CRS
geo.Project().set_crs(CRS("EPSG:20350"))
import geolime as geo
from pyproj import CRS
geo.Project().set_crs(CRS("EPSG:20350"))
In [3]:
Copied!
dh = geo.datasets.load("rocklea_dome/dh_hyper.geo")
dh = geo.datasets.load("rocklea_dome/dh_hyper.geo")
In [4]:
Copied!
gis_obj = geo.datasets.load('rocklea_dome/hyperspec_outline.shp')
gis_obj = geo.datasets.load('rocklea_dome/hyperspec_outline.shp')
Spatial Visualization¶
Visualize Data With No Coordinate Reference System (CRS)¶
XY Plot¶
In [5]:
Copied!
geo.plot(dh, property="Fe_pct", agg_method="mean", width=400, height=650)
geo.plot(dh, property="Fe_pct", agg_method="mean", width=400, height=650)
Contour Plot¶
In [6]:
Copied!
geo.contour_plot(dh, property="Fe_pct", fill_contour=True, width=400, height=650)
geo.contour_plot(dh, property="Fe_pct", fill_contour=True, width=400, height=650)
In [7]:
Copied!
geo.contour_plot(dh, property="Fe_pct", fill_contour=False, width=400, height=650)
geo.contour_plot(dh, property="Fe_pct", fill_contour=False, width=400, height=650)
Visualize Data With Coordinate Reference System (CRS)¶
Using Plotly¶
Single GeoRefObject¶
In [8]:
Copied!
geo.plot_2d(
dh,
property="Fe_pct",
agg_method="mean",
width=400,
height=650
)
geo.plot_2d(
dh,
property="Fe_pct",
agg_method="mean",
width=400,
height=650
)
Single GISObject¶
In [9]:
Copied!
geo.plot_2d(
gis_obj,
property="FID",
width=400,
height=650
)
geo.plot_2d(
gis_obj,
property="FID",
width=400,
height=650
)
Multiple GeoLime Objects¶
Note that the order of the list indicates the order of the layer on the map, ie: the first object defined is the most below one.
In [10]:
Copied!
geo.plot_2d(
[
{"georef_object": gis_obj, "property": "FID"},
{"georef_object": dh, "property": "Fe_pct", "agg_method":'sum'},
],
width=400,
height=650,
colorscale='viridis'
)
geo.plot_2d(
[
{"georef_object": gis_obj, "property": "FID"},
{"georef_object": dh, "property": "Fe_pct", "agg_method":'sum'},
],
width=400,
height=650,
colorscale='viridis'
)
Using Folium¶
In [11]:
Copied!
dh.plot_2d("Fe_pct", "mean", interactive_map=True)
dh.plot_2d("Fe_pct", "mean", interactive_map=True)
Out[11]:
Make this Notebook Trusted to load map: File -> Trust Notebook